# Fourier Series

##### Posted on (Update: )

A **trigonometric polynomial (三角多项式)** is a finite sum of the form

where $a_0,a_1,\ldots,a_N, b_1,\ldots,b_n$ are complex numbers but $x$ is real. It can be written in the form

\begin{equation}\label{60} f(x) = \sum_{-N}^Nc_ne^{inx}\,. \end{equation}

It is clear that every trigonometric polynomial is periodic, with period $2\pi$.

If $n$ is a nonzero integer, $e^{inx}$ is the derivative of $e^{inx}/in$, which also has period $2\pi$. Hence

Multiply \eqref{60} by $e^{-imx}$, where $m$ is an integer, if we integrate the product, then we have

\begin{equation}\label{62} c_m = \frac{1}{2\pi}\int_{-\pi}^\pi f(x)e^{-imx}dx \end{equation}

for $\vert m\vert\le N$. If $\vert m\vert >N$, the integral is 0.

In agreement with \eqref{60}, define a **trigonometric series** to be a series of the form

\begin{equation}\label{63} \sum_{-\infty}^\infty c_ne^{inx}\quad (x \text{ real})\,. \end{equation}

If $f$ is an integrable function on $[-\pi,\pi]$, the numbers $c_m$ defined by \eqref{62} for all integers $m$ are called the **Fourier coefficients** of $f$, and the series \eqref{63} formed with these coefficients is called the **Fourier series** of $f$.

Natural question: whether the Fourier series of $f$ converges to $f$, or more generally, whether $f$ is determined by its Fourier series.

Let $\{\phi_n\}(n=1,2,3,\ldots)$ be a sequence of complex functions on $[a, b]$, such that

Then $\{\phi_n\}$ is said to be an **orthogonal system of functions** on $[a,b]$. If, in addition,

for all $n$, $\{\phi_n(x)\}$ is said to be **orthonormal**.

For example, the function $(2\pi)^{-1/2}e^{inx}$ form an orthonormal system on $[-\pi,\pi]$. So do the real functions

If $\{\phi_n\}$ is orthonormal on $[a,b]$ and if

we call $c_n$ be the $n$th Fourier coefficient of $f$ relative to $\{\phi_n\}$. We write

and call this series the Fourier series of $f$ (relative to $\{\phi_n\}$).

Let

be the $N$th partial sum of the Fourier series of $f$.

## $\sum_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{6}$

Apply Parseval’s identity to the function $f(x)=x$,

where

for $n\neq 0$, and $c_0=0$. Thus,

Therefore,