This note is for the discussion paper Leiner, J., Duan, B., Wasserman, L., & Ramdas, A. (2023). Data fission: Splitting a single data point (arXiv:2112.11079). arXiv. http://arxiv.org/abs/2112.11079 in the JASA invited session at JSM 2024

This is the note for the talk Statistical Inference in Large Language Models: A Statistical Framework of Watermarks given by Weijie Su at JSM 2024

This is the note for the talk LLMs training given by Linjun Zhang at JSM 2024

This is the note for the talk Statistical Inference in Large Language Models: Alignment and Copyright given by Weijie Su at JSM 2024

This note is for Wainwright, M. J. (n.d.). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. 604.

This is the note for Martin, G. M., Frazier, D. T., & Robert, C. P. (2024). Approximating Bayes in the 21st Century. Statistical Science, 39(1), 20–45. https://doi.org/10.1214/22-STS875

This note is for Boyeau, P., Bates, S., Ergen, C., Jordan, M. I., & Yosef, N. (2023). Calibrated Identification of Feature Dependencies in Single-cell Multiomics.

This note is for Chen, Y. T., & Gao, L. L. (2023). Testing for a difference in means of a single feature after clustering (arXiv:2311.16375). arXiv.

This note is for Chen, Y. T., & Witten, D. M. (2022). Selective inference for k-means clustering (arXiv:2203.15267). arXiv.

This post is for Ahlmann-Eltze, C., & Huber, W. (2023). Comparison of transformations for single-cell RNA-seq data. Nature Methods, 20(5), 665–672.

The note is for Spector, A., & Janson, L. (2023). Controlled Discovery and Localization of Signals via Bayesian Linear Programming (arXiv:2203.17208). arXiv.

This post is for González-Delgado, J., Cortés, J., & Neuvial, P. (2023). Post-clustering Inference under Dependency (arXiv:2310.11822). arXiv.

This note is for Gao, L. L., Bien, J., & Witten, D. (2022). Selective Inference for Hierarchical Clustering (arXiv:2012.02936). arXiv.

This note is based on Shao, J. (2003). Mathematical statistics (2nd ed). Springer. and Hwang, J. (2019). Note on Edgeworth Expansions and Asymptotic Reﬁnements of Percentile t-Bootstrap Methods. Bootstrap Methods.

This post is based on vignettes of MMRM R package: https://openpharma.github.io/mmrm/main/index.html

This post is for Chen, Shuxiao, Sizun Jiang, Zongming Ma, Garry P. Nolan, and Bokai Zhu. “One-Way Matching of Datasets with Low Rank Signals.” arXiv, October 3, 2022.

This post is for Zhang, Shu, Ran Xu, Caiming Xiong, and Chetan Ramaiah. “Use All the Labels: A Hierarchical Multi-Label Contrastive Learning Framework,” 16660–69, 2022.

This post is for two papers on Hierarchical multi-label classification (HMC), which imposes a hierarchy constraint on the classes.

This note is for Turlach, B. A. (2005). Shape constrained smoothing using smoothing splines. Computational Statistics, 20(1), 81–104.

This note is for Groeneboom, P., & Jongbloed, G. (2023). Confidence intervals in monotone regression (arXiv:2303.17988). arXiv.