This note is for Luan, B., Lee, Y., & Zhu, Y. (2021). Predictive Model Degrees of Freedom in Linear Regression. ArXiv:2106.15682 [Math].
This note is based on Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), Article 9.
This post is for Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B., & Goldenberg, A. (2014). Similarity network fusion for aggregating data types on a genomic scale. Nature Methods, 11(3), Article 3. and a related paper Ruan, P., Wang, Y., Shen, R., & Wang, S. (2019). Using association signal annotations to boost similarity network fusion. Bioinformatics, 35(19), 3718–3726.
This post is based on
This note is for Blondel, M., Teboul, O., Berthet, Q., & Djolonga, J. (2020). Fast Differentiable Sorting and Ranking (arXiv:2002.08871). arXiv.
This note is based on Jingyi Jessica Li’s talk on Song, D., Wang, Q., Yan, G., Liu, T., & Li, J. J. (2022). A unified framework of realistic in silico data generation and statistical model inference for single-cell and spatial omics (p. 2022.09.20.508796). bioRxiv.
This post is based on
This note is for Prof. Dong Xu’s talk on Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H., Ma, Q., & Xu, D. (2021). ScGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nature Communications, 12(1), Article 1.
This note is based on
This post is based on Rizopoulos, D. (2017). An Introduction to the Joint Modeling of Longitudinal and Survival Data, with Applications in R. 235.
This post is for the talk at Yale given by Prof. Ting Ye based on the paper Ye, T., Shao, J., & Kang, H. (2020). Debiased Inverse-Variance Weighted Estimator in Two-Sample Summary-Data Mendelian Randomization (arXiv:1911.09802). arXiv.
This note is for Jiang, Y., & Liu, C. (2022). Estimation of Over-parameterized Models via Fitting to Future Observations (arXiv:2206.01824). arXiv.
This note is based on Cai, Z., Poulos, R. C., Liu, J., & Zhong, Q. (2022). Machine learning for multi-omics data integration in cancer. IScience, 25(2), 103798.
This note is based on Subramanian, I., Verma, S., Kumar, S., Jere, A., & Anamika, K. (2020). Multi-omics Data Integration, Interpretation, and Its Application. Bioinformatics and Biology Insights, 14, 1177932219899051.
This note is for monotonic Multi-Layer Perceptron Neural network, and the references are from the R package monmlp
.
This note is for Ghosal, S., Sen, A., & van der Vaart, A. W. (2000). Testing Monotonicity of Regression. The Annals of Statistics, 28(4), 1054–1082.
This note is for Chetverikov, D. (2019). TESTING REGRESSION MONOTONICITY IN ECONOMETRIC MODELS. Econometric Theory, 35(4), 729–776.
This note is for Chen, J., Li, P., & Liu, G. (2020). Homogeneity testing under finite location-scale mixtures. Canadian Journal of Statistics, 48(4), 670–684.
This note is for scale mixture models.
The note is for Bhadra, A., Datta, J., Li, Y., Polson, N. G., & Willard, B. (2019). Prediction Risk for the Horseshoe Regression. 39.
This note is for Pitman, E. J. G. (1939). The Estimation of the Location and Scale Parameters of a Continuous Population of any Given Form. Biometrika, 30(3/4), 391–421. and Kagan, AM & Rukhin, AL. (1967). On the estimation of a scale parameter. Theory of Probability \& Its Applications, 12, 672–678.
This post is for Chapter 3 of Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2nd ed). Springer.
This note contains several papers related to scale parameter.
This note is for Homrighausen, D., & McDonald, D. J. (2013). Leave-one-out cross-validation is risk consistent for lasso. ArXiv:1206.6128 [Math, Stat].
This note is for Shin, M., & Liu, J. S. (2021). Neuronized Priors for Bayesian Sparse Linear Regression. Journal of the American Statistical Association, 1–16.
This note is based on Sec. 4.6 of Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2nd ed). Springer.
This note is for Chapter 3 of van Wieringen, W. N. (2021). Lecture notes on ridge regression. ArXiv:1509.09169 [Stat].
This note is for Chapter 4 of Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. MIT Press.
This note is for Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear Smoothers and Additive Models. The Annals of Statistics, 17(2), 453–510. JSTOR.
This note is for Austern, M., & Zhou, W. (2020). Asymptotics of Cross-Validation. ArXiv:2001.11111 [Math, Stat].
This note is for Paul, D., & Aue, A. (2014). Random matrix theory in statistics: A review. Journal of Statistical Planning and Inference, 150, 1–29.
This note is for Chang, K.-Y., & Ghosh, J. (2001). A unified model for probabilistic principal surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(1), 22–41., but only involves the principal curves.
The note is for Gerber, S., & Whitaker, R. (2013). Regularization-Free Principal Curve Estimation. 18.
This note is for Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2020). Invariant Risk Minimization. ArXiv:1907.02893 [Cs, Stat].
This note is based on Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (n.d.). Learning Systems of Concepts with an Infinite Relational Model. 8. and Saad, F. A., & Mansinghka, V. K. (2021). Hierarchical Infinite Relational Model. ArXiv:2108.07208 [Cs, Stat].
This note is for Chipman, H. A., George, E. I., McCulloch, R. E., & Shively, T. S. (2021). mBART: Multidimensional Monotone BART. ArXiv:1612.01619 [Stat].