December 10, 2024
This note is for Wang, C., Shen, J., Charalambous, C., & Pan, J. (2024). Modeling biomarker variability in joint analysis of longitudinal and time-to-event data. Biostatistics, 25(2), 577–596. https://doi.org/10.1093/biostatistics/kxad009 and Wang, C., Shen, J., Charalambous, C., & Pan, J. (2024). Weighted biomarker variability in joint analysis of longitudinal and time-to-event data. The Annals of Applied Statistics, 18(3), 2576–2595. https://doi.org/10.1214/24-AOAS1896
Continue reading
December 09, 2024
This note is for Ren, Z., & Barber, R. F. (2024). Derandomised knockoffs: Leveraging e-values for false discovery rate control. Journal of the Royal Statistical Society Series B: Statistical Methodology, 86(1), 122–154. https://doi.org/10.1093/jrsssb/qkad085
Continue reading
December 05, 2024
This note is for Wang, R., & Ramdas, A. (2022). False Discovery Rate Control with E-values. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(3), 822–852. https://doi.org/10.1111/rssb.12489 and Aaditya’s talk at ISSI on October 25, 2023
Continue reading
November 22, 2024
This note is for Miao, J., & Lu, Q. (2024). Task-Agnostic Machine-Learning-Assisted Inference (No. arXiv:2405.20039). arXiv. https://doi.org/10.48550/arXiv.2405.20039
Continue reading
November 22, 2024 (Update: )
This note is for Kobyzev, I., Prince, S. J. D., & Brubaker, M. A. (2020). Normalizing Flows: An Introduction and Review of Current Methods (No. arXiv:1908.09257). arXiv. http://arxiv.org/abs/1908.09257
Continue reading
November 12, 2024 (Update: )
This note is for Cable, D. M., Murray, E., Shanmugam, V., Zhang, S., Zou, L. S., Diao, M., Chen, H., Macosko, E. Z., Irizarry, R. A., & Chen, F. (2022). Cell type-specific inference of differential expression in spatial transcriptomics. Nature Methods, 19(9), 1076–1087. https://doi.org/10.1038/s41592-022-01575-3
Continue reading
November 04, 2024
This note is for Niu, Z., Choudhury, J. R., & Katsevich, E. (2024). Computationally efficient and statistically accurate conditional independence testing with spaCRT (No. arXiv:2407.08911; Version 1). arXiv. https://doi.org/10.48550/arXiv.2407.08911
Continue reading
November 01, 2024 (Update: )
This is the note for Moreau, T., Massias, M., Gramfort, A., Ablin, P., Bannier, P.-A., Charlier, B., Dagréou, M., Tour, T. D. la, Durif, G., Dantas, C. F., Klopfenstein, Q., Larsson, J., Lai, E., Lefort, T., Malézieux, B., Moufad, B., Nguyen, B. T., Rakotomamonjy, A., Ramzi, Z., … Vaiter, S. (2022). Benchopt: Reproducible, efficient and collaborative optimization benchmarks (No. arXiv:2206.13424). arXiv. https://doi.org/10.48550/arXiv.2206.13424
Continue reading
October 04, 2024
This post is based on He, J., Yalov, S., & Hahn, P. R. (2019). XBART: Accelerated Bayesian Additive Regression Trees. Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, 1130–1138. https://proceedings.mlr.press/v89/he19a.html and He, J., & Hahn, P. R. (2023). Stochastic Tree Ensembles for Regularized Nonlinear Regression. Journal of the American Statistical Association, 118(541), 551–570. https://doi.org/10.1080/01621459.2021.1942012
Continue reading
September 10, 2024 (Update: ) 0 Comments
This note is for Zhang, M. J., Hou, K., Dey, K. K., Sakaue, S., Jagadeesh, K. A., Weinand, K., Taychameekiatchai, A., Rao, P., Pisco, A. O., Zou, J., Wang, B., Gandal, M., Raychaudhuri, S., Pasaniuc, B., & Price, A. L. (2022). Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nature Genetics, 54(10), 1572–1580. https://doi.org/10.1038/s41588-022-01167-z
Continue reading
September 10, 2024 (Update: ) 0 Comments
This note is for Lu, Y., & Zhou, H. H. (2016). Statistical and Computational Guarantees of Lloyd’s Algorithm and its Variants (No. arXiv:1612.02099). arXiv. http://arxiv.org/abs/1612.02099
Continue reading
This note is for Neufeld, A., Dharamshi, A., Gao, L. L., & Witten, D. (2024). Data Thinning for Convolution-Closed Distributions. Journal of Machine Learning Research, 25(57), 1–35.
Continue reading
August 05, 2024 (Update: ) 0 Comments
This note is for the discussion paper Leiner, J., Duan, B., Wasserman, L., & Ramdas, A. (2023). Data fission: Splitting a single data point (arXiv:2112.11079). arXiv. http://arxiv.org/abs/2112.11079 in the JASA invited session at JSM 2024
Continue reading
August 05, 2024 (Update: ) 0 Comments
This is the note for the talk Statistical Inference in Large Language Models: A Statistical Framework of Watermarks given by Weijie Su at JSM 2024
Continue reading
August 05, 2024 (Update: )
This is the note for the talk LLMs training given by Linjun Zhang at JSM 2024
Continue reading
August 05, 2024 (Update: )
This is the note for the talk Statistical Inference in Large Language Models: Alignment and Copyright given by Weijie Su at JSM 2024
Continue reading
This note is for Wainwright, M. J. (n.d.). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. 604.
Continue reading
This is the note for Martin, G. M., Frazier, D. T., & Robert, C. P. (2024). Approximating Bayes in the 21st Century. Statistical Science, 39(1), 20–45. https://doi.org/10.1214/22-STS875
Continue reading
This note is for Sun, E. D., Ma, R., Navarro Negredo, P., Brunet, A., & Zou, J. (2024). TISSUE: Uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses. Nature Methods, 21(3), 444–454.
Continue reading
This note is for Chen, Z., He, Z., Chu, B. B., Gu, J., Morrison, T., Sabatti, C., & Candès, E. (2024). Controlled Variable Selection from Summary Statistics Only? A Solution via GhostKnockoffs and Penalized Regression (arXiv:2402.12724). arXiv.
Continue reading
April 30, 2024
This note is for Mason, K., Sathe, A., Hess, P. R., Rong, J., Wu, C.-Y., Furth, E., Susztak, K., Levinsohn, J., Ji, H. P., & Zhang, N. (2024). Niche-DE: Niche-differential gene expression analysis in spatial transcriptomics data identifies context-dependent cell-cell interactions. Genome Biology, 25(1), 14.
Continue reading
April 20, 2024 (Update: )
This note is for Candes, E., Fan, Y., Janson, L., & Lv, J. (2017). Panning for Gold: Model-X Knockoffs for High-dimensional Controlled Variable Selection. arXiv:1610.02351 [Math, Stat].
Continue reading
This note is for Boyeau, P., Bates, S., Ergen, C., Jordan, M. I., & Yosef, N. (2023). Calibrated Identification of Feature Dependencies in Single-cell Multiomics.
Continue reading
This note is for Chen, Y. T., & Gao, L. L. (2023). Testing for a difference in means of a single feature after clustering (arXiv:2311.16375). arXiv.
Continue reading
April 12, 2024
This note is for Chen, Y. T., & Witten, D. M. (2022). Selective inference for k-means clustering (arXiv:2203.15267). arXiv.
Continue reading
March 26, 2024
This post is for Ahlmann-Eltze, C., & Huber, W. (2023). Comparison of transformations for single-cell RNA-seq data. Nature Methods, 20(5), 665–672.
Continue reading
February 24, 2024 (Update: )
The note is for Hafemeister, C., & Satija, R. (2019). Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biology, 20(1), 296.
Continue reading
February 20, 2024 (Update: )
This post is for Lin, Z., Kong, D., & Wang, L. (2023). Causal inference on distribution functions. Journal of the Royal Statistical Society Series B: Statistical Methodology, 85(2), 378–398.
Continue reading
February 09, 2024
The note is for Spector, A., & Janson, L. (2023). Controlled Discovery and Localization of Signals via Bayesian Linear Programming (arXiv:2203.17208). arXiv.
Continue reading
February 08, 2024
This post is for González-Delgado, J., Cortés, J., & Neuvial, P. (2023). Post-clustering Inference under Dependency (arXiv:2310.11822). arXiv.
Continue reading
February 08, 2024
This post is for Gaynor, S. M., Fagny, M., Lin, X., Platig, J., & Quackenbush, J. (2022). Connectivity in eQTL networks dictates reproducibility and genomic properties. Cell Reports Methods, 2(5), 100218.
Continue reading
February 08, 2024
This note is for Gao, L. L., Bien, J., & Witten, D. (2022). Selective Inference for Hierarchical Clustering (arXiv:2012.02936). arXiv.
Continue reading
February 07, 2024
This note is for Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J., de Candia, T. R., Lee, S. H., Wray, N. R., Kendler, K. S., O’Donovan, M. C., Neale, B. M., Patterson, N., & Price, A. L. (2015). Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance components analysis. Nature Genetics, 47(12), 1385–1392.
Continue reading
January 31, 2024 (Update: )
This post is for Liu, M., Sun, J., Herazo-Maya, J. D., Kaminski, N., & Zhao, H. (2019). Joint Models for Time-to-Event Data and Longitudinal Biomarkers of High Dimension. Statistics in Biosciences, 11(3), 614–629.
Continue reading
January 31, 2024 (Update: )
This post is for Köhler, M., Umlauf, N., Beyerlein, A., Winkler, C., Ziegler, A.-G., & Greven, S. (2017). Flexible Bayesian additive joint models with an application to type 1 diabetes research. Biometrical Journal, 59(6), 1144–1165.
Continue reading
January 26, 2024 (Update: )
This note is for Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-Barwinska, A., Taylor, K. R., Assael, Y., Jumper, J., Kohli, P., & Kelley, D. R. (2021). Effective gene expression prediction from sequence by integrating long-range interactions. Nature Methods, 18(10), 1196–1203.
Continue reading
January 24, 2024
This note is based on Shao, J. (2003). Mathematical statistics (2nd ed). Springer. and Hwang, J. (2019). Note on Edgeworth Expansions and Asymptotic Refinements of Percentile t-Bootstrap Methods. Bootstrap Methods.
Continue reading
January 23, 2024
The post is for Lee, A. F. S., & Gurland, J. (1977). One-Sample t-Test When Sampling from a Mixture of Normal Distributions. The Annals of Statistics, 5(4), 803–807.
Continue reading
January 22, 2024
This post is for Zou, Y., Carbonetto, P., Wang, G., & Stephens, M. (2022). Fine-mapping from summary data with the “Sum of Single Effects” model. PLOS Genetics, 18(7), e1010299.
Continue reading
January 22, 2024
This note is for Wang, G., Sarkar, A., Carbonetto, P., & Stephens, M. (2020). A Simple New Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(5), 1273–1300.
Continue reading
January 19, 2024
This post is for Taylor, J., & Tibshirani, R. J. (2015). Statistical learning and selective inference. Proceedings of the National Academy of Sciences of the United States of America, 112(25), 7629–7634.
Continue reading
January 19, 2024
This post is for Tibshirani, R. J., Taylor, J., Lockhart, R., & Tibshirani, R. (2016). Exact Post-Selection Inference for Sequential Regression Procedures. Journal of the American Statistical Association, 111(514), 600–620.
Continue reading
January 15, 2024 (Update: )
This post is for Dai, C., Lin, B., Xing, X., & Liu, J. S. (2023). A Scale-Free Approach for False Discovery Rate Control in Generalized Linear Models. Journal of the American Statistical Association, 118(543), 1551–1565.
Continue reading
January 10, 2024 (Update: )
This post is based on vignettes of MMRM R package: https://openpharma.github.io/mmrm/main/index.html
Continue reading
January 06, 2024 (Update: )
This post is for Chen, Shuxiao, Sizun Jiang, Zongming Ma, Garry P. Nolan, and Bokai Zhu. “One-Way Matching of Datasets with Low Rank Signals.” arXiv, October 3, 2022.
Continue reading
December 08, 2023 (Update: )
The post is for Neufeld, Anna, Lucy L Gao, Joshua Popp, Alexis Battle, and Daniela Witten. “Inference after Latent Variable Estimation for Single-cell RNA Sequencing Data.” Biostatistics, December 13, 2022, kxac047.
Continue reading
December 04, 2023
This post is for Tenha, Lovemore, and Mingzhou Song. “Statistical Evidence for the Presence of Trajectory in Single-cell Data.” BMC Bioinformatics 23, no. Suppl 8 (August 16, 2022): 340.
Continue reading
December 04, 2023
This post is for Song, Dongyuan, Kexin Li, Xinzhou Ge, and Jingyi Jessica Li. “ClusterDE: A Post-Clustering Differential Expression (DE) Method Robust to False-Positive Inflation Caused by Double Dipping,” 2023
Continue reading
November 26, 2023
This post is for Pinheiro, José C., and Douglas M. Bates. “Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model.” Journal of Computational and Graphical Statistics 4, no. 1 (1995): 12–35.
Continue reading
November 25, 2023
This post is for Zhang, Shu, Ran Xu, Caiming Xiong, and Chetan Ramaiah. “Use All the Labels: A Hierarchical Multi-Label Contrastive Learning Framework,” 16660–69, 2022.
Continue reading
See all posts →