Gibbs in genetics
Posted on
The note is for Gilks, W. R., Richardson, S., & Spiegelhalter, D. (Eds.). (1995). Markov chain Monte Carlo in practice. CRC press..
Introduction
- essential feature of genetic studies: involve related individuals.
- standard analysis methods of epidemiology is inappropriate which assume independence.
Standard methods in genetics
Genetic terminology
- genes, alleles, diallelic, genotype,
- homozygous, heterozygous
- dominant trait, recessive, codominant
- fully penetrant, locus, partially penetrant
- polygene
- Hardy-Weinberg equilibrium
- Linkage analysis
Genetic models
- $y_i$: phenotype for subject $i=1,\ldots,I$
- $x_i$: measured risk factors
- $z_i$: polygene
- $P$: a probability
比较表型和性状:
性状是指生物体所有特征的总和,由基因决定,必须是可以遗传的。而表型则是这些基因决定的性状在环境作用下的具体表现,与性状的概念有着本质区别,表型是不可遗传的。所以说表型又称性状的观点是不符合遗传学概念的。
a genetic model is specified in terms of two submodels.
- penetrance model $P(y\mid G, x,\Omega)$
- genotype model $P(G,z\mid\Theta)$
penetrance model:
- $y_i$ are conditionally independent given their genotype
- consider late-onset disease traits, characterized by a dichotomous disease status indicator $d$.
- an age variable $t$
- hazard function: $\lambda(t)$
- the penetrance for an unaffected individual is the probability of surviving to age $t$ free of the disease, \(S(t) = \exp[-\Lambda(t)]\,,\) where $\Lambda(t)=\int_0^t\lambda(u)du$
- the penetrance for an affected individuals is the density function $\lambda(t)S(t)$
- proportional hazards model: \(\lambda(t, G, x, z)=\lambda_0(t)\exp\{\beta x+\gamma\cdot \mathrm{dom}(G)+\eta z+\ldots\}\)
- genotype model: \(P(G\mid\Theta)=P(G_1\mid\Theta)\prod\limits_{i=2}^IP(G_i\mid G_1,\ldots,G_{i-1};\Theta)\)
segregation analysis.
New words
- nuisance
- frailty
- meiosis
- sperm
- pedigree
- daunting
- spouse