Notes of STAT 6060

WANG Lijun
April 30, 2019

This note consists of the lecture material (the main document), four homework (in-
dexed by “Homework”) and several personal comments (indexed by “Note”).

1 Inequalities

1.1 Chebyshev’s Inequality

Consider a random variable X, Vz > 0,

1.1.1 Basic form

E|X
P(X >1z) < X1 :
x
more precisely,
EX1(X >
x
It is important to know the proof idea:
+
(X >x) < —
x
1.1.2 Generating function
EetX
P(X >x) = P(e™ >e") < — = e E(e)
e X

1.1.3 Two dimensional case

Note that
U(X,Y) € A] < explsX +6 — inf (sz+ ty)]
T,y e
then we have
P((X,Y) € A) <exp[— inf (sz+ ty)]E(e™*Y)

(z,y)€A
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1.2 Lyapunov’s Inequality

fo<r<s<t, - )
EIX|* < [E[X[]e= [E[ X[ (1)

Homework 1. Verify (1). Hints: Holder’s Inequality.
Ifp,q € [1,00] with 1/p+1/q = 1, then

EIXY| < [EIX]]VPEY|]V0.

Proof. Let
I t—s 1 s—r

p t—r q¢ t—r’

which satisfy 1/p + 1/¢g = 1, and we have r/p + t/q = s, then by Holder’s Inequality,
EIX|* = E|X|"7| X"
r 1/ 1/
< [E(Qx|77p] " [E(Xx [
= [E[X|"]= [EIX[]= .

1.3 Kimball’s Inequality

Theorem 1. Suppose g(x) and h(z) are monotone increasing function, then
Eg(X)h(X) > Eg(X)ER(X) .

Proof. Let X,Y be independent random variable satisfy X 2y, then

2Eg(X)ER(X) = Eg(X)ER(Y) + Eg(Y)EA(X)
E[g(X)h(Y) + g(Y)h(X)]
E| +g

(X)h(
g(X)n(X) +g(Y)h(Y)],

IA

where the inequality is due to
g(X)MY) + g(Y)h(X) = g(X)h(X) = g(Y)R(Y) = —=(9(X) = g(Y))(h(X) = h(Y)) < 0.
If g(x) is monotone increasing while h(z) is monotone decreasing, then

Eg(X)h(X) < Eg(X)ER(X) .
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1.4 Bennett-Hoeffding’s Inequality

Theorem 2. Let X,, be independent random variables and let S, = > | X;. Assume that
EX; <0,X; <a(a>0)foreachl <i<n,and .  EX? < B2. Then
2

P52 <o () >
32
Pz zon(- Bl0r B E) )

where the second conclusion implies the first conclusion.

Proof. Intuitively,

vy » Y Y’
A+ylogl+y) —y=0+y)ly- S +T - )-y=y+y — T+ —y="7-,
and we always have
2
Y
1+y)log(l+y)—y> .
(1+y)log(1 +y) Y2501y

Note that for ¢ > 0,

P(S, > z) < e "Eer = 7" H Ee!¥i .
i=1
If s < a, we can find C, such that
e <1+s+ 320a

for any s < a, where
ef—(1+4+s) e*—(1+a)

C, = = )
SSISIE <2 o2
Then
e —1—t
EéXig]EP.+tX;+t?X?<3——————3)}
' t2q?
ta
B e —1—ta
el — 1 —ta
< exp [BXF——] .
it follows that
ta ta
. e —1—ta g€ —1—tay A
P(S, >z) <e “exp (ZEXZ T) < exp ( —tr+ B”T) = exp(g(1)) .

Choose t to minimize g(t) by letting

B2
/ n a —
g(t):—x—l—?(ae —a)=0,
and
1 za + B?
t = —log (—)
a xra
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Corollary 1. IfEX; < 0and Y EX? < B2, then forp > 1 and z > 0,

B, 3\’
P(Snszn)gP(maxXizx >+< P )

1<i<n p p+ a2

Proof. By truncation, let Y; = X;1(X; < 2B, /p), then

B
EY; = EX, — EX,1 (Xi>x ”) <0
P

and Y; < %. Then

p

B
P(S, > 2B,) < P (maxXi > 2
p

n Bn
) + P (Sn > xB,,max X; < a ) )

For the second term,

B,
P (Sn > 2B, max X; < - ) <P Y, >1B,)
p

1.5 Rosenthal’s Inequality

If X, are independent random variable and EX; = C, and E|X;|? < oo when p > 2. Then

(ESHP? +> E|Xf (4)

=1

E|S.[" < G,

(ES;)? + ) E|Xf

i=1

E[Su[" > D, (5)

Proof of (4). For z > 0, we have

then
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A special case is

E|XP :/ prP ' P(|X| > x)dz.
0

Furthermore, it can be extended to negative x by

g(x) = ¢(0) —l—/_oo Jg)[10<t<z)—1(x <t<0)dt.

Note that

E|S,|P :/ p\Sn]p_lP(]Sn] > x)dx
0

= Bﬁ/ prP~ ' P(|S,| > xB,)dx
0

n 0 Bn 00 3 p
< BﬁZ/ prP~lp (|Xz| > ’ )dx+B£/ prP~t.2. ( 4 2) dx,
= Jo p 0 Ptz

where B2 = ES?, and in the first term,

o0 B xBn (e%e] pp—l p
BP Pip X > dr = BP - P(|X;| > y)=d
et (1302 2 Y ar = [T E P 2 )y

n n

ZP”/ " P(|Xi] > y)dy
0
:ppE‘X’L’p7

and the integral in the second term is finite since p > 2, then

E|S.P < C, .

(ES;)P? + ) E|Xf

=1

Homework 2. Verify (5).
Proof. In the Lyapunov’s Inequality (1), let » = 0, then we have
EIX|* < [BIX [,

Since p > 2, then
ESy < [B|S,[7]?,

that is,
(BES2P? < E|S,[.

By Marcinkiewicz-Zygmund inequality, there exists A, such that

E|S, [P > A E ([Z Xf]p/Q) ,
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and since X? > 0 and p > 2, then we have

p([2]") = 2 (S ) < (Sher).

thus take D, = A+1'

E|S.[P > D, |(ES;)P? + ) E|Xi|?

i=1

1.6 Nonnegative Random Variables

Theorem 3. Assume that X; > 0 with EX? < co. Let i, = > ¢ | EX; and B2 = %" | EXZ.
Then for x > 0,

LL‘Q
P(Sy < pin — x) < exp (—232) :

Proof. Note that
P(S, < pin — ) = P(=Sy > —pi + x) < et Bt
Since if s < a, we have ¢* < 1+ 5 + s*°C,, now if s < 0, then e® < 1+ 5 + 5%/2, it follows

that
t2X 2

e <1 —tX; +

and hence
Ee i <1— EtX,; + EEXi <exp|—tEX;+t — )

Thus,

ettt Bt < exp (t,un —tr — tz EX; +t* Z EXf/Q) = exp(—tz + t*B2/2),

i=1 i=1

which is maximized when t = x/B2, so

Theorem 4 (Bernoulli Random Variables). Assume that P(X; = 1) = p; and P(X; = 0)

1 — p;. Then for x > 0,
pre\
> < [ —
P(Sn_x)_<:1:> ’

where =", pi.
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1.7 Symmetric Random Variables

Theorem 5. If ¢; are independent random variables with P(e; = 1) = P(e; = —1) = 1/2, then

forany x > 0,
P <Z:_a€ . x) <o

V Z?:l az? B

" a? = 1. Since

=1 "1

Proof. Without loss of generality, assume ) |

1 2
5(68 + e—s) < e’ /2 7
which can be showed easily by Taylor expansion, then we have

e 1 ) ) 1,2 2
Eetalel — E(eml +€ tal) S egt a;

It follows that

n
P> a2 a) < e B T

=1

which is maximized when ¢ = z, thus

22

n
P(Z e >x)<e 7.
i=1

Theorem 6. If X, ..., X, are independent symmetric, i.e., X; L _X,, then forany x > 0,

P Zi:l Xi >z | < e~ T2
2 X}

Proof. Introduce independent {¢;} random variables and P(¢; = —1) = P(¢; = 1) = 1/2,
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then X 4 X;e;. Thus,

P (—Zi:; X a:) =P ijl Xiei :c)
Zi:l Xi Zizl(X¢€¢)2
— P Ei:l Xigi Z T
Vi X7
n X ;
—E P(ZZ— > )‘Xl,...,X]
L V Zz 1 X

= Ee™ /2 = ¢72*/2

]

Theorem 7 (He and Shao, 2000). Let X, ..., X,, be independent random variables with EX,; =
Oand Y | EX} < BZ LetS,=> " X;and V? =" X2, then

P(S, > x(V, +4B,)) < 2¢7%/2.
Proof. Introduce independent copy of {X;}, {Y;}, then {X, — Y;} are symmetric, then

P (Zn:(Xz -Y) > xJ Zn:(Xl - 5@)2) <2,

i=1 i=1

By triangle inequality,

VI -y <SS,

then for z > 1,

{Z X; > x(V, + D, + C), ‘

|<C v < n
C {Z(XZ-—Yi) zx< Z(Xi—Yi)Q—DnJrDmLCn) —cn}

C {Z(X@- V) >/ (X - YZ-)Q} :
then

P (XX = a(Vat+ Do+ Co) | Y VIS C) P(IY VI <G Y Y2 < D,)
<P (Z(Xi —Y) >/ > (X —Yi)?) :

Choose C,, = 2B,, and D,, = 2B,,, then

(IZYI>0)S EQCY)? 1

C?2 4
P(Yyrzp) < 2oL
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By the inequality
P(AB) >1— P(A°) — P(B°),
we have .
Py vI<c. v <) >,
and hence

P (Z X; > a(V, + 4Bn)> < 2e"/2,

Open Question 1 (Conjecture). If Y a? = 1, then

P(> ae] > 1) <1/2,

more generally,

P(> ail > y)+ P ae| > 1/y) < 1.

2 Stein’s Method

Let W be a real-valued random variable. If W has a standard normal distribution, then
Ef(W) =EW f(W)

for any absolutely continuous function f with E|f'(W)| < co. If the equation holds for
any continuous and piecewise continuously differentiable functions f : R — IR with
|f'(Z)] < oo, then IV has a standard normal distribution.

The Stein’s equation is

flw) —wf(w) =1(w < z) — ¢(2),
and a more general one:
f(w) —wf(w) = h(w) — EMZ).
We want to bound

A, =sup|P(X <z2)—P(Z<z)|=sup|P(X < z)—D(2)].

The key idea is this:
EY f(Y)] = E[f'(Y)]

for all smooth f iff Y ~ N(0,1). This suggests the following idea: if we can show that
E[Y f(Y) — f/(Y)] is close to 0, then Y should be almost Normal.
The Stein function f associated with & is a function satisfying

f'(w) =z f(z) = h(z) — E[A(Z)].
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It then follows that
E[n(X)] = E[r(2)] = E[f'(X) - X f(X)]

and showing that X is close to normal amounts to showing that E[f'(X) — X f(X)] is
small.

Choose any z € IR, and let h(z) = I(X < z) — ®(2). Let f, denote the Stein function
for h; thus

filz) —xf(z) = I(x < 2) — ®(2).

Let F = {f. : z € R}. From the equation f'(x) — zf(z) = h(z) — E[h(Z)] it follows that

P(X < 2) - P(Y < 2) = E[f'(X) - X f(X)]

and so
An =sup |P(X < z) = P(Z < 2)| < sup [E[f'(X) = X f(X)]].
n feF
Example 1 (Sums of Independent Random Variables). Let &, . . ., &, beindependent random

variable such that E; = 0for 1 <i<nand ) ;. E =1 Let W =" 6&.
Proof. Our goal is to estimate
ER(W) = Eh(Z) = Ef' (W) — E[W f(W)].

The main idea of Stein’s method is to rewrite E[W f(1¥)] in terms of a functional of f.

E[W f(W)] = Z Bl& f(W)]

= S B[a(7V) - FOV - )]

=S E[&(WO 4 &) - FVO)| Letw® —w ¢,

-Y Els /_OO FOVO 4 )0 <t < &) — L& <t < 0)]di

= Z/ Eff(WO +0E[5(1(0 <t < &) —1(& <t <0))]dt

=1

Thus, for very nice f,

B[ F(W)] = zn:E/_oo POV 4 0K, ()dt

10
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From " | [% K;(t)dt = Y1 | E¢ = 1, it follows that
EFOVN) =Y E [ FOVIK@ar,
i=1 -

Thus,
EF(V) ~ BV FOV) = 3B [ [£0V) = 00+ oK)t
i=1 o0
By the mean value theorem,

LF WD+ 8) = O] < I+ &l) -

Then
E / PO o)~ FOV)E (5t < ||7|E / (It] + €DK (1)t
1
= I7I(5Bl&l + BlelBe?)
3
< Bl
< 3|1 EEP
Thus,

3
[ER(W) — ER(Z)| < 3||R"[ Y _El&.
i=1

More sharp bound can be

|F WO 1) — f/(W)] < 2|0 min([t] + [&],1).

]
Theorem 8. Assume that there exists § such that for any h satisfying ||I'|| £ sup,, |/ (w)| < <.
Then
sup |[P(W < z) — ®(2)| < 26"/,
Proof.
P(W <z)—®(z) <Eh. (W) —Eh.(Z) + Eh.(Z) — EL(Z < 2)
J
< g—i—E]l(nggz—i—g)
J
==-+¢€
£
Take ¢ = /6. O

Theorem 9 (Berry-Esseen Bound). sup, |[P(W < z) — ®(z2)] < 41> " | El&)°.

11
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Proof. Note that
Ef(W) — EW f(W }jq/ FOV) = VO 4 K (1),

where

E/wmo—ﬂww+mmwmmﬁ

= E/(Wf(W) — (WO 1) fWD + ) K;(t)dt + E/(IL(W < z2) = I(W9 4+t < 2))K;(t)dt

S A+ A

Since

(WEW) = (WO +6) f(WD )] = |(WD + &) fW) — (WD + 1) f(WD +1)]

< (WOt + 1&l) + 1&] + [¢]

WO+ 1)(Jt] +1&l)

|
|
|
(
then

ZE/ WO+ 1)1+ &D Kt <27 Blgl -5 —3ZEI&I3,

and hence |4;1] <3 E|&[?. The second term A; ; can be written as

( )
WOLFW) = fWD + )] + & f (W) = tf (WD +1)

Aig = / (PWW <z—&) = PWY <z —1)) Ki(t) < /P(Z—t <WW < z—&)K;(t)dt

and we claim that

Pla<W® <b)<b—a+2> E|&,
=1

which is the following theorem.

Theorem 10. W = Y &;, where ES; = 0 and Y E&? = 1, then
Pla<W <b)=b—a+2r,

where r = > E|& 3.

12
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Proof.
E[W f(W)] = ZE& FW = &))]
=1
=ZE&/ FOV + 1t
i=1
:ZE / fW+H)1(-&<t<0)—1(0<t< &))}
=1
:ZE'/ POV + D616 < 1 <0) =20 < 1 < ~£))dl]
=1
—Z / F (W + t)K;(t)dt
Let
— -0 fw<a-—96
flw) = w—“T“’ fa—o<w<b+946,
”_T“—{—(S ifw>b+96
then b
BWF0V)] < (5 + SR < “ 0% 44,
and

Z / W+ 1)K, dt>ZE[ (a<W <b)

= ZE [1(a < W < b)|&]| min(|&;, 0)]

f(i(t)dt]

[t|<d

—E[1a<w <) el min(!m,é)]

=1

=E ]l(aSWSb)im]

=1

=E :_]L(aSWSb)ZEm} +E[l(a§W§b)Z(77i—E77i)}
2P(a§W§b)ZEm—E‘Zm—Em
>Pla<W<b)) En—d,

where the last inequality is follows from

B> —En| < JiEng < Jing&é.
=1 =1

13
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Thus,
b—
L1462 Pla<W<b)> En 6.
Note that ,
min(x,y)zx—jf—y x>0,y >0.
Then

|3 1
> 2_@ —1_— _Fl&3
D Bm> ) BE - 2) =1- =Flgf,
take § = > E|&[3/2, then we have

Pla<W <b)<b—a+45.

2.1 Randomized Concentration Inequality

Theorem 11 (Randomized Concentration Inequality). Let &1, &, ..., &, be independent
random variables satisfying E&; = 0 and E|&]? < oo for each 1 < i < n and such that

Z?:l Eé'zz =1 Let W = Z?:l Siv Al = A1(§17 e 7571)7 AQ = Ag(fl, . ,Sn) Then
P(A; < W < Ay) <43 EIGPHEW (Ag=A1)|+) | ElG(AI—Ar) [+ El&(Aa—As,)],
=1 =1 =1

where Ay ; and A, ; are Borel measurable functions of (§;,1 < j < n,j #1).

Proof. Let
—b_T“—cS fw<a-—9¢
fap(w) =Qw—2L  jfa—0<w<b+4,
b*T“—i—é ifw>b+9
then

EW fa,00W) = E&(farneW) = farae W=D+ E&(farne(W=8&)—Fana,(W=5)).
=1

=1

It can be verified that

| fan,n, (W) = fayn,,(0)] <AL = Apgl/2 4+ [Ay — Aoyl /2,

then yields

n 1
; E&i(fara,(W = &) = fayn, (W =&))| < 5

D EBl&G(AL = A+ ) ElGi(Ag — Ayy)
=1 =1
More details can be found in Chen, Goldstein, and Shao (2010). [

14
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2.2 U-Statistics

Let Xi, Xs,..., X, be a sequence of i.i.d. random variables, and for some m > 2, let
h(xy,...,x,) be a symmetric, real-valued function, where m < n/2 may depend on n,
and let § = Eh(X; , X;,.). The class of U-statistics are those random variables that

can be written as .
n
Un: hXi17"'7Xi .
(1) = )

1<) < <im<n

19

Here we focus on m = 2 with symmetric kernel h(x,y) = h(y,z), and § = Eh(X;, X>).
Without loss of generality, assume 6 = 0. Let g(x) = Eh(x, X ), then we can decompose
the U-statistic as follows:

Then
1
Un= 7o h(Xs, X;)
2> 1<i<j<n
9 9 n A
== 9(Xi)+ 1) (h(Xs, X;) — 9(X3) — 9(X;))
=2 i=1
)
= - 9(Xi) + —Ay
n

If ER?(X,, X5) < oo and 07 = Var(g(X;)) > 0, we have the central limit theorem,

NG
P(zalUn_:c) @(m)‘%Oasn%oo

sup
x

3 Exchangeable pair

Let W, be a sequence of random variables. Using the exchangeable pair approach of
Stein’s method, we can identify the limiting distribution of IV, as well as the L; bound of
the approximation.

Write W = W, and let (W, W’) be an exchangeable pair, that is, (W, W’) and (W', W)
have the same joint distribution. Put A = W — W/, for the normal approximation, assume
that

E(A|W) =AW + Ry).

15
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Note that if h(z,y) = —h(y,x), then EA(W,W') = —ER(W' W) = —Eh(W,W’), and
hence EA(W,W’) = 0, then

0= E[(W =W)(f(W)+ f(W))]
= 2E[((W =W f(W)] = E[W = W) (f(W) = f(W))]
= 2B{E[(W = W) f(W) | W]} — E{A[f(W) — f(W = A)]}
= 2E{f(W)E(W = W'| W)} = E{A[f(W) = f(W = A)]}

_2E[f(W)AW + Ry)] A/ POV + )]

=2\ [E(Wf(W)HE FOW)Ry) —E/ (W + K (t)dt]

where A A < 0 0<t< —A
f = ALCAZ <0 - 10 << -a)
2\
is nonnegative, and [*°_ K (t)dt = 57, [ |t|K(t)dt |A| . It follows that
EW f(W (/ FOWV 40K ) E[f(W)Ri].

Then, for any absolutely continuous function » with ||2/|| < oo,
/ 1 2 1 3
[ER(W) — ER(Z)] < 2|0/ (E[1 = SE(A? | W)| + EIA]* + EIR])
Proof. Consider the Stein equation,
f'(w) —wf(w) = h(w) — ER(Z).
Note that
En(W) = EN(Z) = Ef'(W) = EW f(W)
=Ef'(W / ff(W+ K

= Ef (W) —E/ (f' (W +8) = [ (W) + f(W) K (t)dt + E[Ry f(W)]

— £y - rong;

2>\) - E/_Z[f'w +1) = f(W)IK (t)dt + ER f(W)

where the first term
sfrono- )] -2l - 251

can be bounded by 2||#/|| E ‘1 - =
in the first equation, which is not sharp.

, and it is not proper to directly bound by f/(1V)

16
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Since |f'(W +t) — f/(W)| < |t||| /||, then the second term

B [TUw e - p k@i s 2 < 2 2130

[l
Now consider how to construct W’ in general, denote W = W (¢4, ... ,¢&,), where ¢; are
independent, let
= W(é-la"wé}w”agn)a
where [ is a random index, which is independent of other random variables, P(/ = k) = -
for 1 < k <n,and {{} are independent copy of {¢;}, then (W, W’) is exchangeable.
Homework 3. Verify the above property.
Proof. Note that
P(W =w, W' =uw')=EPW =w,W =w"|I)]
1 n
=—Y PW=wW =u|I=i)
n
i=1
1« ,
==Y PW=uw W=uwl|l=i)
n
i=1
=EPW =uw' W =w|I)]
=PW=uw W =w),
which implies that (W, W’) is exchangeable. O

Consider a special case, W = Y7 &, where §; are independent, E¢; = 0Oand Y | | BE? =
1, then W/ =W — & + &), thatis, W — W' = £; — &, it follows that

EW —W'|W)=E(E& -&|W)= ZE —&|w).

Note that conditioning on a larger class, we have

n

1 <& , ] 1 / _1 n _1
E;E(&_ffz’fblﬁjﬁn)zﬁ (Z(fz—E§Z)> —E;&_EW,

=1

thus E(W — W' | W) = W/n. And we have

EA n n
'A' E|€1—§1|3—HX—ZE =§;E<£i—§;>3SS§;E|&|3-

17
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Next consider

B(A*]&,1<j<n)= ZE ) &,1<j<n)
== Z(&? + B(E))
=1
- S @B,
=1

then

BN g,1<5<n) -

<j< 1 s
5 =15 (§+Eg) = 503 &) = Z = Zm,

=1 =1

where En; = 0 and by Jensen’s Inequality,

B> il < Var(Som) = /3 Var(m) < /" B2 < /S Eel

Here and in the sequel, Z denotes the standard normal random variable. For the
Berry-Esseen bound, we have

E|A|3>1/2'

|
sup | P(W < 2) = ®(2)| < B[l - S~ B(A? | W)| + BIR| + (=5

zelR
It is known that it usually fails to provide an optimal bound.

Theorem 12 (Shao and Zhang, 2019). Let (W, W’) be an exchangeable pair satisfying
E(A | W) =AW +R),

for some constant \ € (0, 1) and random variable R, where A = W — W'. Then

1 1
sup |[P(W < z) — ®(2)| < E|1 — 5E(A2 | W)| + E|R| + XE|E(AA* | W),
z€R

where A* = A*(W,W') is any random variable satisfying A*(W,W') = A* (W', W) and
A* > |A.

Proof. Note that
0= E[(W = W)(f(W) + f(W))]
=2\ |[E(Wf(W))+ ERfW / FW ) K(t)dt|

where
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and [ K(t) = A%/2).
Let f'(w) —wf(w) = 1(w < z) — ®(2), then

P(W < z) = 0(z) = Eff(W) = EW f(W)

_Ef(W /f (W + K (H)dt + E[RF(W)]
- BpW) - /uav+w FOV) + POV ()t + B[RS (V)
= |y (1-55)] - & [0 w0 - povyieaes Brson,

where the first term
olran (5] = el (- F5) =250

and the third term
E[Rf(W)] < E|R|

due to |f(W)| < 1, then the main part is the second term. Note that
B [(rov +0 - V)R
=B [IW 40 (W +0) - WHOV)K (e + B [[L0V 4t < 2) - 10V < )R (00,
where the second term
/( (W4t < 2) — 1(W < 2)K (1))t
/ / LW +1<2)— 1(W < 2)|dt
EIAIAQW < 2)— LW < 2))
zﬁﬁmmw—>avsaw4mmamwgzm
= L EAIALW < 2)

= EL(W < 2)B(AJA | W)
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4 Non-normal Approximation

Let Y have density p, and letting f be an absolutely continuous function satisfied f(a+) =
f(b—) = 0, then we have

E[f'(Y)+ fY)p'(Y)/p(Y)] = E[(f(Y)p(Y)) /p(Y)]
= / (f()p(y))'dy
= f(b—)p(b—) — fla+)p(a+) = 0.

For any measurable function h with E|h(Y)| < oo, let f = fj, be the solution to the Stein

equation
f'(w) + f(w)p'(w)/p(w) = h(w) = ER(Y),

which can be rewritten as

(f(Wpy)) = (h(w) = ER(Y))p(w),
it follows that
1

) = = / " p(0)(h(t) — ER(Y))dt
_ _L) /Oo p(O)(h(t) — ER(Y))dt .

Py
Lemma 1 (Properties of the Stein Solution). Under certain conditions:

o [fIF < Cullall, 171 < CallAl]
o [FIF< Gl AN < Callll L7 < G-
Theorem 13. Let (W, W’) be exchangeable pair, assume that
(i) EW — W' | W) = Xg(W)+ R(W)), actually it is not a condition, but always exists.
E(A* W)

2\
|3

(ii) 21, where A =W — W',

(iii) |

— 0and E|R| — 0.

then W 5 Y, where Y has pdf p(y) = c1e %W, where G(y) = [V g(
Proof. Note that

0= E[(W = WI)(f(W') + f(W))]
=2Bf(W)W = W') + E(W = W')(f(W') = f(W))

= 2E[f(W)E(W — W' | W)] — EA /0 F'(W +t)dt

:2)\{Ef(W)( )+ fIW)R( ——E( / JWH+HL(-A<t<0)—1(0<t< A)]dt)]

:2A{Ef(W)( )+ f(W ——E/ [ W+ 0K (t)d }
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where
K(t) = E[A(1(—A < ¢ < 0) = 1(0 < t < —|Delta)) | W],

and [ K (t)dt = E(A% | W). By comparing, we should have

then

and it follows that

4,1 Curie-Weiss Model

The Curie-Weiss model is a simple statistical mechanical model of ferromagnetic interac-

tion, where for n € N, a vector o = (04, ..., 0,) of “spin” in {—1, 1}" has joint probability
mass function
p
o)=Cze — i |
plo) = Cyexp (n >

where (3 is a normalizing constant and 3 > 0 is known as the inverse temperature.
Theorem 14. The limiting distribution of > | 0; is

e [f0< B <],

1 — d 1

< Ifi=1,

Theorem 15. Let W = n3—1/4 S oi, and

where o), | 0;,j # i <o | 05,7 # 1, then
o W —W'|<2n™3/4

s E(W—-W"|W)= %nfS/Q(Ws i %)

o E[1—22E(A | W)| < 8n /2

2
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4.2 Poisson Approximation
Let W ~ P(]), the Stein’s identify is
EWfW)=AEf(W +1),
and the Stein’s equation is
Af(w+1) —wf(w) = h(w) = EA(Y),
where Y ~ P(\) and w =0,1,2,....

Theorem 16 (Possion Convergence for Independent Random Variables). For each n let
Xom, 1 < m < n be independent random variables with P(X,, ,, = 1) = ppm, P(Xnm =0) =
1 — pn,m- Suppose

i) > Pam — A€ (0,00)
(ii) maxi<m<n Pnm — 0.
IfS, = Xn1+ ...+ Xpn, then S, A 7 where Z ~ P(N).

But Chen-Stein method (Chen, 1975) can handle dependent cases, and one application
of Chen-Stein method is

Theorem 17 (Arratia-Goldstein-Gordon, 1989). Let I be an arbitrary index set, and for
a € 1, let &, be a Bernoulli random variable with p, = P(§, = 1) =1 — P(§, = 0) > 0. Let

W =3 créaand X =73 pa, then
| P(W € A) — P(Y € A)| < 4(by + by + b3),

where Y ~ P(X), and

bl = Z PaPp

acl

=) > El(&és)
a€l a#BEBqy

bs =Y E|E{ —palo($s: B¢ Ba)}l
acl

A related open question is

Open Question 2. Can you find a "sufficient” condition, or computable estimator for

|P(W e A)—P(Y € A)|?
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5 Large Deviation

Theorem 18 (Cramér-Chernoff large deviation theorem). Let X, X, ..., X, beii.d. ran-
dom variables with P(X #0) > Oand let S, = > | X;. If

Ee®X < 0o for some 6y > 0

then for every x > EX,

lim n~'log P (% > :1:) = log p(x),

n—oo

where p(z) = inf;>p e CEeX
Proof. Upper bound is easy. Note that
Sn S, txn
P ;Zm = P (" > ")
<

EetSn
- et:cn

— (e_thetXI)n ,

it follows that
P <—" > x) < inf e "Ee! X1 .

n t>0

For the lower bound, apply the conjugated method (change of measure).

Note 1 (Conjugated method, or change of measure). Letting e¥®) = Ee, the basic
idea is to embed P in a family of measures Py under which Xy, X, ... are i.i.d. with density
function fo(z) = >~V with respect to P. Then for any event A,

— (05, —n(0
/d—P@czP@ Eg{e vONT(A)}

since the Radon-Nikodym derivative (or likelihood ratio) dPy/dP is equal to T]"_| fo(X;) =
o0Sn—11(6)

Theorem 19 (Radon-Nikodym Theorem). Let v and X be two measures on (S, F) and v
be o-finite. If A\ << v, then there exists a nonnegative Borel function f on 2 such that

:/fdu, AeF.
A

Furthermore, f is unique a.e. v, i.e., if \(A) = [, gdv forany A € F, then f = ga.e.v.
The family of density functions fy is an exponentzal family with the following properties:

EoX =¢/(0),  Vary(X) = ¢"(6).
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In particular, for A = {X,, > x} with x > EX, we choose § = 0, such that EgX = z,
and therefore x = 1’ (). For this choice of 6, which is often called the “conjugate method”,

Ey {e—n(ex)’(n—zb(ex))[(xnzm) }

— (b0 {e—nGI()_(n—x)[(Xn

— @, { o~ Vb (v/1(Xn—)) (X,

Y]

a:)}
)}

S (@) £ o2 — ¥(0,) = sup(0z — (0)).
0
Introduce {Y;} independent,

where

v

N EerXi
Then
PO Xi>y) = (ﬁ EeAXi) E (e—AZYin(ZYi > y)) (6)
P((Xy, ,X@efn:(iiE@&)ExeAE“M@; Y,) € A)) (7)
Homework 4. Verify (6) and (7).
Note that

EeMNil(X; <
P(Y; <y) = Py,((—00,y]) = E€</\Xi y)

_ Eeerwi()\)]l(Xi <y)

— [ @ (@)iPy
where e¥'N) = Ee*Xi and fi(z) = A% is the density function with respect to Px,. Then
the Radon-Nikodym derivative is

dPy,
dPXZ - fz(x) I
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then
dPx,
P(X, < ) 2. dPy.
( < y) / dP}/l (—00,y] («T) Y;
_ /e_(AXi—TZJi(A))]l(_OO,y](17>dPYi
_ Ee/\XiEe_)‘YiI]_(Y; § y) .
Since

d(Py, X Py % --- X Py) {7 dPy; =ﬁf(a:)
d(PX1XPX2><"'><PXn) d]DXZ ! ’

i=1

=1
then we have

v dPy,
P((Xy,..., X, EA:/ “dPy, X --- x dPy,
(X Xo) € 4) = [ TT G5 0P !

_ / e~ S Ou—siN) gpy ... x APy,
A

— 62?:1 Yi(A) / 67/\2?:1 yidPYl X e X dPYn
A

) (HEX) E (=YY, Y,) € 4))

and it follows that

n

P> Xi>y) = (H Eem) E (e*AEYi]l(ZYi > y))

=1

and
Eg(X;)e*]
Bg(Yi) = — % —
EXZ‘B/\X"L
B = pox
Then

P (ﬁ > x) = (Ee’\Xi)nEe’)‘ZYi]l(Z Yi/n > x)
(Ee)‘Xl)nEe_’\EYi]l(x < ZY’/R <z+e¢)

n Y
(Ee)‘Xl) e~ A@te) p (m < —Z <z+ 8) ,

v

v

n
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then

. S Hn .
liminf P (—” >z > Fere MEFe) > Bt Ar — jpf et RetN
n >0

]

A random variable Y is said to be have a stable distribution if for every integer n > 1,

Y
On

where X,,; are i.i.d. and «,, > 0 and (3, are constant.

6 Self-Normalized Large Deviation

Before considering the self-normalized sums, what if P(S,,/V,;? > 2:)? Note that

Sn
P(W Zx) = P(S, —2V?>0)

n
n

= P(Y _(Xi—aX}) > 0),

i=1

letY, = X, — fo, which has a upper bound, and hence it has moment generating
function, then by Cramér large deviation theorem, for any z satisfies 0 > E(X; — zX 2),
i.e, r > EX;/EX? and z > 0, we have

1 - 5
Zlog P X, —2X;)? > 0] — inf BetX1-2X0)
" og (Z( xX;)" > ) inf Fe

t>0
=1
Theorem 20. Assume that either EX > 0or EX* = co. Let V2 =" | X2. Then

lim P(Sn 2 Jj\/ﬁvn)l/n = sup inf e_thEet(QCXl_(CXl)Q)

n—o00 >0 t20
for x > EX/(EX?)'Y2, where EX/(EX?)Y2 = 0if EX? = cc.

Proof. Main idea of its proof: change V;, to V2.
Since for any positive numbers z and y,

Y 1/, y? 1c2a? + 2
= Zo<Z Ly 7
Ty :c\/E\/E_z(xc—l—C) S

1. <02x2+y2>
xy = —inf [ ———— | .

that is,

Thus we can write
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It follows that
1., AVitain
P(S, > 2V,\/n)=P (S, > = inf —>———
2 ¢>0 C
=P <U {2¢8, > V7 + :UZn})
c>0
=P <U {Z(QCXZ- - *X?) > x%}) ,
>0 =1
thus,

P(S, > 2V, \/_)n > sup P (Z L(2eX; — (eX;)?) . ;ﬁ) 1/n

c>0 n

— supinf e 1*” Fet(2eX1—(eX1)?)

c>0 t>0
[
7 Self-Normalized Moderate Deviation
If EX, =0, EX{1(]X;| < z) slowly varying, then Vz,, — 00, 2, = o(y/n)
Sh x2
log P(— > ~ =2
A function L : (0,00) — IR is said to be slowly varying (at co) if
lim L{cz) =1 foralle > 0.
T—00 L(m)
Proof.
Step 1 (Proof of the Upper Bound). Note that
Sh, > Xia > Xio
Pl=2>z,)]<P —~>(1—-¢)x, = 2 ETp |,
(Vn_x>_ ( i > (1 5)x>—|—P< T 5x> (8)

where the second term

P (& > mzn) — P (ZXMX"' > ) gxn>

Va Va N

([Srxit> )" 2 e

P
2 2
(SnP (1X;| > zn ) “n

e2x2

IN

IA
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where the first inequality is from the Cauchy-Schwarz inequality,

Zazb < JZ%JZ”:Z)?,

and the second inequality is based on the following lemma.

Lemma 2. If¢; are independent, P(e; = 1) = p; and P(g; = 0) = 1 — p,, then

() o)

z

P(X1| > ) = 0 (212) |

Since

)

then

It follows that

<3TZP(|XZ'| > zn))a%i B ( o(1)n >E n P

22
e2x2

which requires the assumption that

<ec. 9)

For the first term of (8)

P (Z Xii>(1— g)XnVn) <P (Z Xii > (1= &)z Vi, V2> (1 — s)n) +P(V2 < (1—e)n)
<P X1 > (1 -2 z,/n)+ P(V] <n—en), (10)

where the first term

St en{ )

then we can choose z,, such that x,,\/nz, < en and (9). Consider the second term of (10), by the
inequality for Y; > 0,

2
PO) V<) EY;—ux) <exp( QZEW) ,
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then we have

P (fo < n—en) <P <ZX§]L(|XZ-| < zp) < n—sn)

i=1 =1

<P<ZX2 (1X] < 2) < Y EXPL( X < 2) — 2”)

=1

en
< —
= ( BnEXTL(|Xy| < zn)>
< exp(—222) since EX}1(|X,| > z) = o(2?),

Step 2 (Main Idea of Proof for the Lower Bound). Note that

2172
P(S, > 2,V,) > (s > %%)

1
= P(bS, — b2V2 z?)

_p (Z(in — 5(b)QQ)Q) > %%) ,

let & = bX; — 3(bX;)%. Apply change of measure technique, introduce independent random
variables n; such that
B 1(& < y)

FEeXéi ’

P(n<vy)=
then

M

(Z@ > ) [EeMi]"Ee™ | an > )

More details can be found in Chapter 6 of Pefia, Lai, and Shao (2008).

Note 2. difference between large deviation and moderate deviation
* classical limit theory: the probability events of the form {T,, > a} for constant a.
* large deviation: study events of form {1, > a\/n}.

e moderate deviation: study events of form {T,, > a, } where a,, — oo but a,, = o(\/n)

8 Cramér-Type Moderate Deviations

Question: Is 1 — ®(x,,) close to P(S,,/V,, > x,,)? Or formally, is

Pt

17
L= &)

29
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The following theorems provide some results.

Theorem 21 (Cramér, 1938). If X1, . .., X,, bei.i.d. random variables with E(X;) = 0, E(X}) =
o2, If Ee'oVX1 < oo for some to > 0, then

as n — oo uniformly in x € (0, 0(n'/%)).

Theorem 22 (Shao, 1999). If EX, = 0, E| X, |*> < oo, then

(2
" 7 — 1
1—®(x)
uniformly for z € (0, 0(n'/%)).
Proof.
Step 1. show P(S,/V,, > x,) > (1 — ®(x,))(1 + o(1)).
Note that R
+x
< n n
xnvn — 2b ?

where the equality can be achieved if b = x,/V,. The guideline of choosing b is to let it be a
constant instead of random variable, and be close to x,,/V;,, thus let b = x,,//n (Here we assume
EX? =1). It follows that

P (% > xn> = P(S, > x,V,,)

b2V?2 + 2
>p(s, > n %
(s 257

where & = bX; — £(bX;)%
Apply conjugate method (change of measure), let n; be independent random variable such that

Eeril(& < y)
P(Uz S y) = E€>‘£i )

A >0,

then

- 1 ~ n u 1
P (Z fz Z 51’%) — H EeAfiEe_)‘Zizl m']l(z i Z 51.721) )
=1 =1 1=1
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Choose \ such that Y, En; is equal to or close to %xi, and hence set \ such that Eny is close to

A
or equal to -x% = E8C

It can be calculated that
1
Ee* =1+ 5)\(/\ —DVEX]?+O)BPE|X,)?
1
B¢ = (A — §)b2EX12 + OV E|X, %

Thus, we can choose A = 1, then Eny is close to %%
Back to

2&2 —z HEe)‘&Ee AXizimi] Zn > x

let W =3%""mn, then

1
Ee W 1(W > 5332)

:Ee_’\(W_EW)e_AEW]l(W EW > % 2 _EW)
— o~ MEW [ ~AW—EW)q EW > y,)
SAEW —X\y/Var(W) yvd% W — EW Un
\/Var \/Var(W

Claim that
|Ee "W L(W* > y) — Be M 1(Z > y)| < e M sup [P(W* > 2) — (1 - ®(2))].
Adopting the technique of changing expectation to expectation,

Eg(X) = g(0) + E / C(t)dt = g(0) + E / g1t < X)dt

we have
Ee "W 1(W*>y)=E KA / h e—**tdt) 1(W* > y)}
— )\*E/OO e Nt > WHL(W™ > y)dt
— )\*E/OO e N IP(W* >y, W* < t)dt,
Yy
similarly,

EeN?1(Z > y) = )\*/ P(Z >y, Z <t)dt.
Yy
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Step 2. show P(S,, > z,V,) < (1 — ®(z))(1 + o(1)).
Inspired by the fact of the tail probability of Normal distribution, then
10?V2 + 22 — &2

VVZ+ a2 —&?
2 '

To show the second term is smaller than the first term, note that

PV2 4 g2 — e
2b

p21/2 2 2
} C {5%/2 2 Vo, 2,V < Vot =€ } ,

2b
where

BV2 4 22 — 2

2b

=b*V? + 22 — 2bx,V, > &

=(bV,, — x,)? > &

=|bV, —z,| > ¢

=bV2— 22 >e(bV, +x,) or V-1l < —e(bV, +a,)

T,V <

We want to calculate

P(S, > 2V, 0*V? > 22 + ex,) = P(bS, > 2(B*V)V2 0*V? > o2 + ex,,)
= P((bS,,b*V?) € A),

where A = {(s,t) : s > x\/t,t > 22 + ex, }. Apply Chebyshev’s inequality, we have
P((bS,,b°V?) € A) < Eexp(MbS, — \b?V e Menealus=rat) — _ o
The bound is useless, so we need some modifications.
{(B*V? — 22 > cx,} C{0*V? — 22 > 2202 U {222 > V*V2 — 22 > en,,},
then

inf (Ms—Xt) = inf  (Azvit— \ot)

s>x\/1,202 >t>02 dexy, 2z >t>22 fexn

Prof. Shao shared a more general result

Theorem 23 (Jing-Shao-Wang (2003)).

P (Sn/Va = @)
1 —®(z,)

(1 + xi) Z?:l E|Xi|3
B}

=14+0(1)

for0 <z < where B,, = (ES?)'/? and |O(1)| < C.

Bp
(i, BIX[3)1/37
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Main idea behind its proof. Note that

10?V?2 + 22
nvng_ & n’
‘ 2 b

where the equality can be achieved if b = x,,/V;,. Since B2 ~ V2, choose b = x,,/ B,,.
Lower bound is OK due to
162V2 4 o2 u 1 x?
P(S,>-—2r_""|=P bX,; — = (bX;)?) > =),
(302 572 = PO0X 5050 2 )
Consider the upper bound,
P(S, > 2V,) = P(S, > 2V,,max | X;| < a)+ P(S, > 2V, max |X;| > a),

where the second term is bound by >""" | P(S, > z,V,,|X;| > a). Note that

X
{S, > 2, Vp, | X4| > a} C {L > (22 - )Y |1X,| > a} ,
2
Z#in
then
X
P(Sy > 2,V |Xi] > a) < P (£ > /22 — 1) P(|Xi| > a).
2
2 i X

Theorem 24 (Shao and Zhou, 2016). If {&;} are independent, EE; = 0 and Y | E€? = 1,
then
P ( Z?:l §i+D1 Z xﬂ)
V Z?:1 51'2(1+D2)
1—®(x,)

— 1.

Note 3. Prof. Shao also shared two suggestions about research with us:
* As long as your results are good, do not care much about the journal.

* The author order would be alphabetical in some fields, especially in the probability, so
do not care much about the order.

9 Self-Normalized CLT

Suppose X1, ..., X, are independent, EX; =0,let S, => ", X;and V2 = >"" | X2. The
classical CLT said that g
n — An

bn

2 N(0,1).
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The question is:

4 N(0,1)?

S

Consider two special cases:

e If Xy,..., X, arei.i.d., then

< N(0, 1) «<=EX71(]X,| < z) is slowly varying

S

maxi<i<n | Xi| »

0.
v -

e If X;,..., X, are independent but symmetric, then

maxj<i<n ’Xz | P

&—d><:> -0
Vi Vi '

But max;<;<, | X;|/V,, 2 0is not a sufficient for general case.

Theorem 25 (Shao, 2018). If

(i) maxlff—il 20

(ii) é (E (5—)2) =0
(iii) XZ: (max(vn an)> — 0 where Z E (ija2> =1,

then
Sh

Va
If (i) is satisfied, then (ii) and (iii) are necessary for self-normalized CLT.

4 N(0,1).

Open Question 3 (Conjecture). (i)(ii)(iii) are necessary and sufficient for the self-normalized
CLT.
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