Reproduce Auto-modeling on Many-Normal-Means

Lijun Wang (2022.07.31)

Here is my attempt on reproducing the results of auto-modeling on the
many-Normal-means example.

The main algorithm is

3.2 A coordinate descent algorithm

Note that even with simple gradient based methods, it requires evaluation of the second-order derivatives of G:(f, A)
in E For problems with large p, this approach can be computationally difficult. In this case, the following simple
coordinate descent algorithm can be used. Recall that solutions (H A) satisfy the following two conditions

dG(6,A) LBz, y:) s}frf”J[H, A)
B T on Z o0 o6 3-3)
OV 5(0,A) OL(|X,Y)] 1< OL(B|z;,5;) 7™ (6,))
_ PRV _ T it Bl = fis T - o 1A
0=—"% = ez [o6 } D D o0 6

This motivates a coordinate algorithm that takes as the partial derivatives with respect to A. More specifically, set
k « 0, choose starting values #'" and A", and

repeat

Step 1. Compute f—tzz 1 %L and E x yy.p [%\—”] at the current estimate ¢

Step 2. Obtain A" 1) toward the target (3.4):
Step 3. Obtain #'**!) toward the target (3.3):
Step4. k+ k+1;

(k).

until termination test satisfied.
The problem of updating A'**1) in Step 2 can be implemented to minimize

AV, (6, A)
PP — ‘ E

(3.5)

By (X.Y)~P [

OLAIX,Y)] 12 OL(B|x;,y:) I (6, \)
o 1 ol ol

over A.

e Take another perspective of (3.3), it is just to minimize GHAD(H, A).
Thus, we can directly take advantage with existing nonlinear
programming solvers, such as Ipopt (Interior Point Optimizer).

e For (3.4) and (3.5), since 05, - - -, 0, > 0, then

™ (0,7) =D Aile] =D Mibs (1)

No.1/4

af://n229
https://coin-or.github.io/Ipopt/

and hence

or(™ (6, \)
00

And note that \; > 0, it follows that

>\i :maX(O,di),z’: 2,...,m

where d; is the ¢-th element of

=0 X2 A3 -+ Apm O

OL(0 | X, Y)] 1 zn: OL(0 | zs,y:)

Exy)-p| 20
i—1

For the many-Normal-means example,

50 (4)

m L 2
Li £ L(6 | y;) = —log) ajexp ((B~))
k=1

2

m (yz _
= —log Z Om+k €Xp <—
k=

1

then

(m (v;i-3K6)2
S O exp(—%)(yi—z’m

" (wi-XFo))?
BL'L < Zkzl 01k €XP (_y%)
00y N exp <_M—m0j)2>

2

m (wi-Xh0,)2
Zk:1 Om+k €Xp <— y+>

\

{<m

(5)
£>m+1

For simplicity, I skip the step of approximation of P by bootstrap

samples, and instead directly use the true P.

My pseudo Julia code is as follows,

No.2/4

function auto_modeling()
for 1 = 1:N
6old = 6
Aold = A
A
B = sol_06_given_A(y, A, ...)
if (|| 6old - 6 || < tol) and (|| Aold - A || <

sol_A_given_60(y, 6, ...)

tol)
break
end
end
end
function sol_A_given_6(y, 6, ...)
Equations (3) (4) (5)
end
function sol_6_given_A(y, A, ...)
model = Model(Ipopt.Optimizer)
express the optimization problem "min G™ in
language of JuMP and Ipopt
optimize! (model)
end

As for g-modeling, call deconv function from the R package

deconvolveR.

Like in the paper, I repeat 200 times, then report the average mean
square error. The results are as follows:

Case 1 Case 2 Case 3
n=10 n=20 n=>50 n=10 n=20 n=>50 n=10 n=20 n=>50
MLE 0.951092 1.0176 0.991467 1.05033 0.994893 1.00929 1.01645 1.05389 0.97255
JS 0.297215 0.151387 0.067058 0.948022 0.85625 0.826822 0.565332 0.511735 0.477722
G-modeling 0.18758 0.0856947 0.0404352 0.849796 0.764716 0.607676 0.428163 0.323881 0.263372
Auto-modeling 0.174413 0.107758 0.0510019 0.684122 0.488117 0.374618 0.438326 0.460926 0.379853
Total Time (seconds) = 409.36278 1506.26787 9743.651087 1166.33015 5058.59149 30614.11192 873.212648 4469.79636 47296.0401

No.3/4

. 1 ~ N(—2,0.01) w1 =10
Method #~ N(0,0.01) s ~ N(2,0.01) 1s ~ N(—3,1)
n=10 n=20 n=50 | n=10 n=20 n=50 | n=10 n=20 n=>50
MLE 1.022 0.972 0.985 0.990 1.009 1.003 0.971 1.021 0.983
James-Stein 0.300 0.167 0.066 0.876 0.850 0.826 0.521 0.516 0.482
g-modeling 0419 0.395 0.168 0.748 0.724 0.737 0.554 0.552 0.364
Auto-modeling 0.199 0.110 0.054 0.600 0.437 0.356 0.420 0.418 0.312

Table 1: Summary MPE results in three simulation studies with different methods.

Compared to the results in the paper,

e Except for the results of g-modeling, others are close to the

reported results in the paper.

e In my experiments, g-modeling can outperform auto-modeling,

but I did not deliberately select its parameters. The paper also did

not discuss how they chose the parameters for this method. So g-
modeling might be better than the reported performance in the

paper.
e Currently, the program is relatively slow, and the computational

burden is mainly Step 3 in the coordinate descent algorithm. Are

there any speed-up strategies?

No.4/4

	Reproduce Auto-modeling on Many-Normal-Means

