Auto-modeling on Many-Normal-Means Example

Lijun Wang (2022.07.31)

Here is my attempt on reproducing the results of auto-modeling on
many-Normal-means examples.

The main algorithm is

3.2 A coordinate descent algorithm

Note that even with simple gradient based methods, it requires evaluation of the second-order derivatives of G:(f, A)
in . For problems with large p, this approach can be computationally difficult. In this case, the following simple
coordinate descent algorithm can be used. Recall that solutions (#, A} satisfy the following two conditions

_0Gy(8,A) 1 AL(B|zi,) Ow™(8,)
=~ - Hg 20 a0 (3-3)
oV, (8, A) OL(AIX,Y)] 1= 8L(Blz;,y;) Ox™(0,))
_ P.P _ T 1 = i M - 1
0=—"7 HEn [o0] D DT i 6

=1

This motivates a coordinate algorithm that takes as the partial derivatives with respect to A. More specifically, set
k « 0, choose starting values #'" and A", and

repeat

Step 1. Compute 1 5~ 2EEZ) and By vy p [%ﬂ] at the current estimate §'*/;

Step 2. Obtain A" 1) toward the target (3.4):
Step 3. Obtain #'**!) toward the target (3.3):
Step4. k+ k+1;

until termination test satisfied.

The problem of updating A'**1) in Step 2 can be implemented to minimize

EH"_PP[H, A) ~

ki | g
o ,

- _ - 3.5)
(X.¥)~P [o0 a0 a0 (

OLOIX,Y)] 15— OL(O)x,) Ox™(6,))
B e >

over A.

e Take another perspective of (3.3), it is just to minimize
G\biaP

nonlinear programming solvers, such as Ipopt (Interior Point

(0,). Thus, we can directly take advantage with existing

Optimizer).
e For (3.4) and (3.5), since 05, - - -, 0, > 0, then

No.1/3

af://n133
https://coin-or.github.io/Ipopt/

7 (0,0) =) MelOl =) Mibs (1)
k=2 k=2

and hence

or(™ (6, \)
00

=0 A2 Az -+ Ay 0 - 0] (2)
And note that \; > 0, it follows that

)\z' :max(O,di),i:2,...,m (3)

where d; is the i-th element of

OL(0| X,Y), 1 OL(O| i, y:)
E(xy)~pl 20] — . Z 50 (4)

=1

For many-Normal-means example,

m o y)
= L0 |y;) = —logZak exp (— (i —))

k 2
m Yi — - 0.
=~—bg§:9m%eM9<—(2101 >,

2

then

m (5i-X16;)°
OL;) 2 k=1 Ot €xp <—y+>
00, exp (_ (i1 "6)?)

(5)

B £>m+1
m i—50;)? =
Zk:l Ok €Xp (—%)

\

For simplicity, I skip the step of approximation of P by bootstrap
samples, and instead directly use the true IP.

No.2/3

As for g-modeling, just call deconv function from the R package

deconvolveR.

Like in the paper, I repeat 200 times, then report the average mean
square error, the results are as follows

o 1~ N(—=2,0.01) 1 =10
Method 2 e (0, V) 12 ~ N(2,0.01) pz ~ N(=3,1)
n=10 n=20 n=50 | n=10 n=20 n=50|n=10 n=20 n=>50
MLE 1.022 0.972 0.985 0.990 1.009 1.003 0.971 1.021 0.983
James-Stein 0.300 0.167 0.066 0.876 0.850 0.826 0.521 0.516 0.482
g-modeling 0.419 0.395 0.168 0.748 0.724 0.737 0.554 0.552 0.364
Auto-modeling 0.199 0.110 0.054 0.600 0.437 0.356 0.420 0.418 0.312
Table 1: Summary MPE results in three simulation studies with different methods.
Case 1 Case 2 Case 3
n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50
MLE 0.951092 10176 0.991467 1.05033 0.994893 1.00929 1.01645 1.05389 0.97255
s 0297215 0.151387 0.067058 0.948022 0.85625 0.826822 0.565332 0511735 0.477722
G-modeling 0.18758 0.0856947 0.0404352 0.849796 0.764716 0.607676 0.428163 0.323881 0.263372
Auto-modeling 0174413 0.107758 0.0510019 0.684122 0.488117 0.374618 0.438326 0.460926 0.379853
Total Time (seconds) | 409.36278 1506.26787 9743.651087 1166.33015 5058.59149 30614.11192 873.212648 4469.79636 47296.0401

Here are some observations:

e Except the results of g-modeling, others are close to the reported

results in the paper.

¢ In my experiments, g-modeling can outperform auto-modeling,
but I did not deliberately select its parameters. The paper also did
not discuss how they choose the parameters for this method.

e Currently, the program is quite slow, and the computational
burden is mainly Step 3 in the coordinate descent algorithm. Is

there any speed-up strategies?

No.3/3

	Auto-modeling on Many-Normal-Means Example

