Auto-modeling on Many-Normal-Means Example

Lijun Wang (2022.07.31)

Here is my attempt on reproducing the results of auto-modeling on
many-Normal-means examples.

The main algorithm is

3.2 A coordinate descent algorithm

Note that even with simple gradient based methods, it requires evaluation of the second-order derivatives of G:(f, A)
in . For problems with large p, this approach can be computationally difficult. In this case, the following simple
coordinate descent algorithm can be used. Recall that solutions (#, A} satisfy the following two conditions
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This motivates a coordinate algorithm that takes as the partial derivatives with respect to A. More specifically, set
k « 0, choose starting values #'" and A", and

repeat

Step 1. Compute 1 5~ 2EEZ ) and By vy p [%ﬂ] at the current estimate §'*/;

Step 2. Obtain A" 1) toward the target (3.4):
Step 3. Obtain #'**!) toward the target (3.3):
Step4. k+ k+1;

until termination test satisfied.

The problem of updating A'**1) in Step 2 can be implemented to minimize
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over A.

e Take another perspective of (3.3), it is just to minimize
G\biaP

nonlinear programming solvers, such as Ipopt (Interior Point

(0, ). Thus, we can directly take advantage with existing

Optimizer).
e For (3.4) and (3.5), since 05, - - -, 0, > 0, then
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And note that \; > 0, it follows that
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where d; is the i-th element of
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For many-Normal-means example,
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For simplicity, I skip the step of approximation of P by bootstrap
samples, and instead directly use the true IP.
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As for g-modeling, just call deconv function from the R package

deconvolveR.

Like in the paper, I repeat 200 times, then report the average mean
square error, the results are as follows

o 1~ N(—=2,0.01) 1 =10
Method 2 e (0, V) 12 ~ N(2,0.01) pz ~ N(=3,1)
n=10 n=20 n=50 | n=10 n=20 n=50|n=10 n=20 n=>50
MLE 1.022 0.972 0.985 0.990 1.009 1.003 0.971 1.021 0.983
James-Stein 0.300 0.167 0.066 0.876 0.850 0.826 0.521 0.516 0.482
g-modeling 0.419 0.395 0.168 0.748 0.724 0.737 0.554 0.552 0.364
Auto-modeling  0.199 0.110 0.054 0.600 0.437 0.356 0.420 0.418 0.312
Table 1: Summary MPE results in three simulation studies with different methods.
Case 1 Case 2 Case 3
n=10 n=20 n=50 n=10 n=20 n=50 n=10 n=20 n=50
MLE 0.951092 10176  0.991467 1.05033  0.994893 1.00929 1.01645 1.05389 0.97255
s 0297215  0.151387  0.067058  0.948022 0.85625  0.826822  0.565332 0511735  0.477722
G-modeling 0.18758  0.0856947  0.0404352  0.849796  0.764716  0.607676  0.428163  0.323881  0.263372
Auto-modeling 0174413  0.107758 0.0510019  0.684122  0.488117  0.374618  0.438326  0.460926  0.379853
Total Time (seconds) | 409.36278 1506.26787 9743.651087 1166.33015 5058.59149  30614.11192 873.212648 4469.79636 47296.0401

Here are some observations:

e Except the results of g-modeling, others are close to the reported

results in the paper.

¢ In my experiments, g-modeling can outperform auto-modeling,
but I did not deliberately select its parameters. The paper also did
not discuss how they choose the parameters for this method.

e Currently, the program is quite slow, and the computational
burden is mainly Step 3 in the coordinate descent algorithm. Is

there any speed-up strategies?
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