Algorithm SMC method for protein segment construction

```
1: x_0^{(j)} = \emptyset, j = 1, 2, \dots, N
2: for i from 1 to l-3 do
          for j from 1 to N do
              Construct list L_i^{(j)} of possible pairs (\phi', \psi') for amino acid i for n from 1 to 100 do

Propagate x_{i-1}^{(j)} \to x_i^{(j,n)} as follows:
 4:
 5:
 6:
                  Draw one (\phi_i, \psi_i) pair from L_i^{(j)} and \omega_i \sim p(\omega_i), and sample up to
 7:
                  n_s side chain positions for \chi_i.
                  if i = 1 then
 8:
                      Let \{s_{i,j,n}^{(k)}\}_{k=1}^{N_s} contain the n_s positions for \chi_1
 9:
10:
                      Propagate \{s_{i-1,j,n}^{(k)}\}_{k=1}^{N_s} \to \{s_{i,j,n}^{(k)}\}_{k=1}^{N_s} using embedded side chain filter: set \{s_{i,j,n}^{(k)}\}_{k=1}^{N_s} to be the N_s vectors of \chi_{1:i} with the lowest energies among the N_s \times n_s combinations of \chi_{1:i-1} with \chi_i.
11:
                  end if
12:
              end for
13:
          end for
14:
          Sample N particles from \{x_i^{(j,1)},\ldots,x_i^{(j,100)}\}_{j=1}^N to be x_i^{(1)},\ldots,x_i^{(N)}
15:
17: Do final processing (including analytical closure for last three amino acid
      positions) and output conformations.
```