SMC method for protein segment construction

- 1: $x_0^{(j)} = \emptyset, j = 1, 2, \dots, N$ 2: **for** i from 1 to l-3 **do**
- for j from 1 to N do 3:
- Construct list $L_i^{(j)}$ of possible pairs (ϕ', ψ') for amino acid i 4:
- for n from 1 to 100 do 5: Propagate $x_{i-1}^{(j)} \to x_i^{(j,n)}$ as follows: 6:
- Draw one (ϕ_i, ψ_i) pair from $L_i^{(j)}$ and $\omega_i \sim p(\omega_i)$, and sample up to 7:
- n_s side chain positions for χ_i . 8:
 - if i = 1 then

end if

end for

end for

- else

positions) and output conformations.

- Let $\{s_{i,i,n}^{(k)}\}_{k=1}^{N_s}$ contain the n_s positions for χ_1
- Propagate $\{s_{i-1,i,n}^{(k)}\}_{k=1}^{N_s} \rightarrow \{s_{i,i,n}^{(k)}\}_{k=1}^{N_s}$ using embedded side chain
- filter: set $\{s_{i,i,n}^{(k)}\}_{k=1}^{N_s}$ to be the N_s vectors of $\chi_{1:i}$ with the lowest
- energies among the $N_s \times n_s$ combinations of $\chi_{1:i-1}$ with χ_i .
- Sample N particles from $\{x_i^{(j,1)}, \dots, x_i^{(j,100)}\}_{i=1}^N$ to be $x_i^{(1)}, \dots, x_i^{(N)}$

- 14:

12:

13:

15:

9:

10:

11:

- end for

- 17: Do final processing (including analytical closure for last three amino acid