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1 Essentials of Survival-Time Analysis

Mathematical models in the form of ordinary differential equations (ODEs) often
use simple rate transition terms such as ẋ =−µx. In this context people often refer
to an exponential process, and it is sometimes not clear what they mean. We like to
use this chapter to understand where such terms in differential equations come from
and what is really behind the assumption of an exponential distribution. This will
also clarify the relationship between rates and probabilities and highlight a common
misunderstanding of this relation. Furthermore, the general framework developed
here allows us to make a connection to delay differential equations1.

1.1 Basic notations

We are interested in individuals that can change their state. For example, susceptible
individuals can get infected, prey individuals can be hunted, juvenile individuals can
mature, mature individuals can reproduce, etc. We are interested in the expected time
that an individual stays in a given state (i.e. time to get infected, time to get eaten,
time to mature, etc.).

• Let a be the time that an individual spends in a given state. The time a is called
the soujourn time, the interevent time, the survival time, or the ... ?
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• Let F(a) denote the probability that an individual has not left the state before
or at time a. Often F(a) is simply called the survival probability, where here
survival must be understood as survival in a given state until the individuum
moves to the next state. We call F the soujourn function, or survival function and
we assume that F(a) is non-increasing and F(0) = 1. If lima→∞ F(a) = 0 then
each individual has to leave the state eventually. If F(a) = 0 for all a > c, then
there is a maximum state duration time c and all individuals will have left before
time c.

• If T denotes a random variable for the time to exit a given state, then

F(a) = P(T > a).

• The function G(a) = 1−F(a) = P(T ≤ a) denotes the probability to have left
before time a.

1.2 Conditional Probabilities and Exit Rates

We are interested in the conditional probability to still remain in the state for h time
units longer, given that the individual stayed already up to time a. This conditional
probability is given by

F(h|a) = F(a+h)
F(a)

.

The conditional probability to exit exactly between time a and a+h, given that the
individual was in the state at time a is then

F(a)−F(a+h)
F(a)

= 1−F(h|a).

If F is differentiable, then we define the exit rate as

µ(a) = lim
h→0

F(a)−F(a+h)
hF(a)

=−F ′(a)
F(a)

. (1)

Note that since F is non-increasing the rate µ(a) is non-negative. If F is not differ-
entiable, then we still use (1) with the distributional derivative of F .

Example 1: exponential distribution The first and most important example is
the exponential distribution. I.e. we assume that the exit time is exponentially dis-
tributed and the soujourn function is given by

F(a) = e−γa.

In this case we can easily compute the rate (1) as
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µ(a) = γ,

and the conditional probability

F(h|a) = e−γh = F(h).

Hence the conditional probability of surviving h time units longer is independent of
the time spend in the state. In fact, the exponential distribution is the only distribu-
tion with this property:

Theorem 1. (From Propostion 12.8 in [?]) F(h|a) is independent of a if and only if
F(a) = e−γa, for some constant γ ≥ 0.

In case that the time increment h = ∆ t is small, we can expand the exponential
and find the probability of leaving the state in the interval [t, t +∆ t] as

G(∆ t) = 1−F(∆ t|t) = 1− e−γ∆ t ≈ γ∆ t +o(∆ t).

In fact, the equation
G(∆ t) = γ∆ t (2)

is often used to explain the relationship of a rate to a probability. We see here that
this relationship is an approximation for small time increments ∆ t.

We can consider a similar expansion for general (differentiable) survival proba-
bilities F(a) as

G(∆ t) = 1−F(∆ t|t)≈ F ′(0|t)∆ t +F ′′(0|t) (∆ t)2

2
+h.o.t.

Let us take a brief look at the common use of the relation (2) as it is often found in
the literature. Consider recovery from a disease and let us assume that 2 individuals
recover per day. Then the probability to recover in one day is G(1) = 2/20 = 1/10.
The corresponding rate, according to (2) is γ = G(1)/1 = 1/10. The rate here has
units day−1. The probability to recover in 1/2 a day equals G(0.5) = 1/20 and the
corresponding rate is µ = (1/20)/(1/2) = 1/10. Similarly, the probability to re-
cover in 2 days is G(2) = 4/20 and the rate is µ = (4/20)/2 = 1/10. We see that
the rate remains constant, but the probability of change depends on the time interval
chosen. It should be noted, though, that the rate has units day−1 and if these units
are changed, to weeks−1 for example, then the rate changes as well.

Let us consider a simple probabilistic model for the recovery process. If I(t)
denotes a random variable for the number of infected individuals at time t, then

I(t +∆ t) = I(t)−G(∆ t)I(t).

We subract I(t) and divide by ∆ t to obtain

I(t +∆ t)− I(t)
∆ t

=−G(∆ t)
∆ t

I(t).
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Passing to the limit ∆ t→ 0 we arrive at an ODE

İ(t) =−µI(t).

1.3 Age-Structured Models

In the general case we found the rate

µ(a) =−F ′(a)
F(a)

.

In this case it can be shown that the population density satisfies an age structured
model (see [?] for details). The McKendrick model describes the population density
u(t,a) of the number of individuals with state-age a at time t:

ut +ua = −µ(a)u

u(t,0) = B(t) (3)
u(0,a) = u0(t),

where B(t) describes the individuals that enter the state with state-age 0. In addition
to (3) we also assume that no individual stays forever, i.e. u(t,∞) = 0.

The total state contents is then

N(t) :=
∫

∞

0
u(t,a)da.

Example: Exponential exit times: In the case of exponential exit times F(a) =
e−γa we find µ(a) = γ and we can integrate (3) with respect to a:∫

∞

0
utda+

∫
∞

0
uada =−µ

∫
∞

0
uda

which gives a linear birth-death ODE for N:

Ṅ = B(t)−µN(t) (4)

For the general case of F(a) it was shown in Thieme [?], that we can derive also an
equations for N(t).

Theorem 2. (Thieme [?]). Assume B(t) is continuous and F(a) is continuously dif-
ferentiable with F ′(a)≤ KF(a), then

Ṅ(t) = B(t)−C(t) (5)

with

C(t) =
∫ t

0
µ(a)B(t−a)F(a)da+

∫
∞

t
µ(a)F(a)

u0(a− t)
F(a− t)

da.
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If F is not differentiable, we can still write C(t) using the integral over the measure
dF(a) as:

C(t) =−
∫ t

0
B(t−a)dF(a)−

∫
∞

t

u0(a− t)
F(a− t)

dF(a). (6)

Example 2: fixed stage duration. Another interesting example is the case where
individuals stay in the state for exactly τ time units and then they leave immediately.
In that case

F(a) =
{

1 a≤ τ

0 a > τ
. (7)

The soujourn time F is not differentiable, but we can take the distributional deriva-
tive as

F ′(a) =−δτ(a),

which means the measure in (6) is

dF(a) =−δτ(a)da

Then (6) becomes

C(t) =
∫ t

0
B(t−a)δτ(a)da+

∫
∞

t

u0(a− t)
F(a− t)

δτ(a)da

=

{
B(t− τ) t > τ

u0(τ− t) t < τ
.

This leads, for t > τ to a delay differential equation for N:

Ṅ(t) = B(t)−B(t− τ).

1.4 Summary of survival time analysis

• The time that individuals spend in a given state can have a general probability
distribution F(a).

• The most important case is the exponential distribution F(a) = e−γa. In this case
the rate µ(a) = γ is constant and the conditional probabilities to live h time units
longer do no depend on the actual survival time a. Typical transition terms in
differential equation models are based on the exponential distribution. The un-
derstanding that the transition probability in a small time interval [t, t +∆ t] is
given by P∆ t = γ∆ t is in fact an approximation to the true value of

P∆ t = 1− e−γ∆ t .

• A fixed stage duration (7) leads to delay differential equations.


